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Abstract. In this work, we introduce a restricted ballistic deposition model with symmetric growth rules
that favors the formation of local finite slopes. It is the simplest model which, even without including a
diffusive relaxation mode of the interface, leads to a macroscopic groove instability. By employing a finite-
size scaling of numerical simulation data, we determine the scaling behavior of the surface structure grown
over a one-dimensional substrate of linear size L. We found that the surface profile develops a macroscopic
groove with the asymptotic surface width scaling as wsat o< L, with @ = 1. The early-time dynamics
is governed by the scaling law w o t°, with 3 = 1 /2. We further investigate the sensitivity to initial
conditions of the present model by applying damage spreading techniques. We find that the early-time
distance between two initially close surface configurations grows in a ballistic fashion as D « ¢, but a
slower Brownian-like scaling (D o tt/ 2) sets up for evolution times much larger than a characteristic time
scale tx oc L2.
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1 Introduction

The dynamics of growing surfaces [1] has been a subject
of increasing interest in material science impelled by on-
going developments on techniques such as vapor deposi-
tion, molecular-beam-epitaxy and sputtering. Very recent
advances in the field of ballistic deposition processes [2-9]
and the general problem of surface growth kinetics and
fractal scaling [10-17] have further broadened the rel-
evance of such developments. Several stochastic non-
equilibrium models have been proposed to describe the
surface morphology and evolution resulting from distinct
growth processes. It has been well established that the
dominant relaxation mode plays an important role in de-
termining the scaling behavior of surface roughening [18].
The growth dynamics is well described by the Kardar-
Parisi-Zhang [19] equation when desorption is the rele-
vant process governing the surface relaxation. Dynamic
renormalization group analyses of the KPZ equation have
shown that the rms fluctuation in the surface height,
known as the surface width w, is described by the scal-

ing relation
w=LOf(t/17), 1)

where L is the linear dimension of the substrate, with
a = 1/2 and z = 3/2 in the case of a one-dimensional
substrate [19]. The surface roughness width w saturates
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as wgat ¢ L%, but exhibits an initial power law increase
with time according to w o t°, with 8 = «/z. Ballistic
deposition (BD) is the simplest lattice model which cap-
tures the essence of the lateral surface growth (e.g., in
growth processes with desorption). Numerical simulations
have shown that the BD model indeed belongs to the same
universality class as the KPZ equation [1].

In contrast, surface diffusion is the relevant relaxation
mode in film growth techniques such as molecular beam
epitaxy and vapor deposition [20]. Several stochastic dis-
crete on-lattice models and continuous differential equa-
tions have been proposed for describing these processes.
Some of these models exhibit a breakdown of translational
invariance. The surface develops a macroscopic groove as
a consequence of an intrinsic instability favoring the cre-
ation of large slopes in the interface which are limited only
by the periodic boundary conditions [18,20]. For sputter-
ing, instabilities can lead similarly to the formation of
ripples [21-23].

Constraints imposed on the surface relaxation modes
can usually modify the universality class governing the
temporal evolution of the surface width. In particular,
Park et al. introduced a new ballistic deposition model
on which local height differences are restricted to be pos-
itive or zero [24]. For an initially asymmetric interface,
with all local differences being non-negative, they showed
that the surface width within this restricted model has
an asymptotic width characterized by the same roughness
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Fig. 1. (a) Example of a deposition process permitted in both
BD as well as SRBD. (b) Example of a process permitted in
BD that is prohibited in SRBD. This restriction kills very many
potential deposition processes. (¢) Example of a second-layer
lateral deposition process that is permitted in SRBD but which
does not occur in BD.

exponent « of the unrestricted model, i.e., & = ayp,. How-
ever, the dynamic exponent § was found to be given by
5 = 5KPZ/(1 - ﬁKPZ)'

In this work, we introduce a new symmetric restricted
ballistic deposition model. The model allows for lateral
growth and favors the formation of finite local slopes.
We will show that, even in the absence of particle dif-
fusion, an initially smooth surface exhibits a translational
symmetry-breaking, developing a groovy asymptotic pro-
file. By employing a finite-size scaling of numerical data,
we obtain the dynamic scaling exponents. Further, we
characterize the sensitivity to initial conditions on this
model through a damage spreading analysis.

2 Symmetric restricted ballistic deposition
model — SRBD

In what follows, we consider a ballistic deposition (BD)
model for the growth of an interface over a one-
dimensional substrate. In this model, particles are released
from randomly chosen positions above the surface, located
at a distance larger than the maximum height of the in-
terface (Fig. la). In the simplest version of the model,
each particle follows a straight vertical trajectory until
it reaches the surface. In classic BD, the particle sticks
to the first particle it encounters in the surface, either
on top (vertical growth) or laterally (horizontal growth).
Here we introduce a restricted growth model by imposing
the condition that the lateral growth take place only by
the adsorption of the particle on the lower diagonal (see
Fig. 1c); if the corresponding site is already occupied, the
particle does not attach on the surface. Therefore, within
the above growth rules, the dynamic processes in which
the growing columns’ heights equal their nearest neigh-
bors’ are rejected (Fig. 1b).
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Fig. 2. (a) Symmetric restricted ballistic deposition surface
growth for L = 100, in contrast to (b) classic ballistic deposi-
tion, for 2 x 10* particles in groups of 4 x 10°.

The deposited particles form a cluster (or aggregate)
with a very characteristic geometry. Figure 2a shows the
structure produced by the model after the deposition of
2 x 10* particles — in comparison to the structure pro-
duced by the standard ballistic model in Figure 2b. These
figures highlight the position of the interface at successive
intervals of 4 x 10% deposited particles, so that the growth
process can be followed qualitatively. In the SRBD an ini-
tially flat interface roughens at early times but gradually
develops local grooves. After a long deposition period, a
single groove profile sets up as in MBE models with par-
ticle diffusion. The position of the dominant groove ran-
domly changes from one experiment to another reflecting
the breakdown of the translational invariance.

In order to describe quantitatively the interface growth
in the SRBD model, we computed the interface width w
that characterizes the roughness of the interface. It is de-
fined as the rms fluctuation in the height,

1

w(L,t) = Z[h(l}t) — h()]?, (2)

il

where h(i,t) is the height of column i at time ¢ and h(t)
is the mean height of the surface at time ¢.

In all our simulations, the growth starts from a hori-
zontal line with periodic boundary conditions; the inter-
face at time zero is simply a straight line, with zero width.
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Fig. 3. Time evolution of (a) the surface width for various L
and (b) after rescaling. Here, @ = 1 and z = 2. The configu-
rational average was carried out over 800 surfaces. Time here
is measured in lattice sweeps, i.e. L particles are dropped per
unit time.

As deposition occurs, the interface gradually roughens as
already evidenced in Figure 2a.

3 Scaling behavior in the SRBD model

A typical plot of the time evolution of the surface width in
the SRBD has two regions separated by a ‘crossover’ time
tyx as in the standard BD model (see Fig. 3a). Initially,
the width increases as a power of time,

w(L,t) ~ t° [t < ty]. (3)
The growth exponent § characterizes the time-dependent
dynamics of the roughening process. The power-law in-
crease in width does not continue indefinitely, but is fol-
lowed by a saturation regime (the horizontal region of
Fig. 3a) during which the width reaches a saturation value,
Wsat- In Figure 3a, four different curves correspond to the
time evolution of the width obtained by simulating sys-
tems with four different sizes L. As L increases, the satu-
ration width, wsas, increases as well, and the dependence
also follows a power law,

Weat (L) ~ L [t > tx]. (4)
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The roughness exponent « characterizes the roughness of
the saturated interface. The crossover time ¢y (sometimes
called saturation time) at which the interface crosses over
from the behavior of equation (3) to that of equation (4)
depends on the system size,

tx ~ L*, (5)

where z = o/ is the dynamic exponent.

The above exponents can be estimated by employing a
data collapse of the finite size data onto a universal curve.
w(L,t)/wsat (L) is a function of ¢/t only, i.e.,

mE (). (©

Wsat (L)
where f(u) is called a scaling function. Replacing ws,t and
tx by their scaling forms, we obtain the Family-Vicsek
scaling relation (Eq. (1)).

The general form of the scaling function f(u) can
be seen from Figure 3a. There are two different scaling
regimes depending on u = t/t«. For small u, the scaling
function increases as a power law. As t — oo , the width
saturates. In this limit, f(u) = const.

We test the validity of the scaling relation (Eq. (1))
numerically by re-plotting the data of Figure 3a. By plot-
ting on the horizontal axis ¢/L? and on the vertical
w(L,t)/L*, the curves from different linear sizes collapse
onto the scaling function f(u) once the proper exponents
are used. The rescaled curves are shown in Figure 3b,
and the data collapse found indeed supports the scaling
hypothesis. The scaling exponents found for the SRBD
model are « = 1 and z = 2 (8 = «/z = 1/2). Note that
the growth exponent 8 of the SRBD model is the same as
that found for the RBD model [24] once these exhibit the
same time scales. On the other hand, the roughness expo-
nent « is quite different; its value @ = 1 indicates that the
SRBD model is indeed at the threshold of instability for
the generation of large local slopes.

We now briefly discuss the deeper mathematical rea-
sons underlying the extremely large values of a > 1/2 ob-
served in the SRBD model. Usually such behavior arises
from diffusion, but this model inherently lacks diffusion,
hence the instability arises purely from the dynamical
growth rules. By allowing lateral growth only on the sec-
ond layer rather in the same layer, the model forces all
lateral growth to lead to a local surface slope of 1. At the
same time, vertical growth is prohibited whenever it leads
to a reduction of the local slope. Hence, this model very
quickly generates long-range correlations along the sur-
face, tending ultimately to a single sloping surface. The
SRBD model is important because it is the simplest which,
without including a diffusive relaxation mode of the inter-
face, leads to macroscopic grooves with oo = 1.

4 Damage spreading in the SRBD model

The damage spreading technique is an important tool for
investigating the sensitivity to initial conditions in non-
linear dynamical systems [25-29]. The important measur-
able quantity in this technique is the Hamming distance
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D, defined as the difference between two configurations
of the system evolving under identical external noise and
whose initial state differs only by a very small pertur-
bation. It has been previously used in various discrete-
growth models to explore the relation between the sur-
face correlation length and the propagation distance of
the perturbation [30].

Here, we follow the temporal evolution of two inter-
faces A and B. The initial condition of system A is a
flat interface with h*(i,0) = 0 for all positions i. The
initial condition of system B differs from that of system
A by a small bump at a randomly chosen site ig, i.e.,
hB(i,0) = bi,,. Then both interfaces are evolved under
identical dynamical rules of the SRBD model. The same
sequence of random numbers is used during the growth
of both surfaces to simulate a common external noise. We
define the Hamming distance as

D(t) =

I

L
ZIhA(Z',t) = hP(i, ). (7)

In the standard BD model, the dynamic scaling behav-
ior of the Hamming distance can be directly related to
the proper scaling of the surface width. In the BD model
the maximum difference between the heights of columns
in system A and B is max |h*(i,t) — hB(i,t)| = 1. There-
fore the Hamming distance should saturate at a maximum
value D(t — o) = 1. At early times the set of dam-
aged columns is compact and its size scales as the corre-
lation length, thus giving rise to a power-law increase of
the Hamming distance as D(t) oc /% [24].

The present SRBD model exhibits a breakdown of
translational invariance. As a consequence, the surface
develops a groove whose peak randomly changes from
one experiment to the other. Therefore, even two ini-
tially close interface configurations will become asymp-
totically uncorrelated. Following this reasoning, the Ham-
ming distance is expected not to saturate but to grow
in a Brownian fashion as D(t) o t'/? after a transient
time of order t,. In Figure 4a we plot D(t)/t'/? versus t
for distinct lateral sizes L which exhibit the above trend.
These curves can also be collapsed onto a universal curve
by properly rescaling the time axis as shown in Figure 4b.
Once the Brownian divergence of the two configurations
is taken into account, the sensitivity to initial conditions
at early times can be related to the correlation length ex-
ponent as D(t)/t'/? o« t'/#. Therefore the Hamming dis-
tance has a crossover from a fast ballistic-like behavior
D(t) o tY/?2+1/% for t < ty to a slower Brownian diver-
gence D(t) o< t1/2 for t > t.

5 Conclusions

In this work, we have introduced a symmetric restricted
ballistic deposition model which develops a groove insta-
bility in the absence of particle diffusion. The model is a
variant of the standard ballistic deposition. It allows for
lateral growth only along the lower diagonal of the first site
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Fig. 4. (a) Time evolution of Hamming distance and (b) Ham-
ming distance as a function of time rescaled by L?. For very
small times, note the breakdown in scaling. The configurational
average was carried out over 800 surfaces. The different curves
correspond to simulations for different system sizes L.

on the interface found by an ejected particle. However, it
rejects processes which would imply in the overtaking of a
local maximum, thus favoring the formation of finite local
slopes.

We have employed a finite-size scaling analysis of data
from the surface width and computed the scaling expo-
nents governing the interface roughness. We have found
that the roughness exponent a = 1 as a signature that this
model is in the threshold of instability to the developing of
large local slopes. Indeed, the asymptotic profile resulting
from the SRBD dynamical rules exhibits a breakdown of
translational invariance and develops a groove with unit
slope. The growth exponent was found to be § = 1/2,
in agreement with the result for the RBD model which
exhibits the same time scale [24].

Further, we have investigated the sensitivity to ini-
tial conditions of the SRBD model by using the dam-
age spreading technique. We have found that the distance
between two initially close interface configurations grows
at early times in a ballistic fashion D(t) o ¢ and there-
fore faster than the correlation length £(t) o t'/% (z =
a/f = 2). In this sense, the sensitivity to initial condi-
tions of the SRBD model is similar to the one reported for
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the larger curvature model [24]. For systems of finite size,
the configurations become uncorrelated after a crossover
time tyx o L?, and a slower Brownian divergence of the
configurations sets up.

In summary, we report the fundamentally relevant
scaling exponents related to the SRBD model. This model
is the simplest one which, without including a diffusive
relaxation mode of the interface, exhibits a macroscopic
groove instability. There is great potential for the the
model to be used as a prototype to study the develop-
ment of the grooved phase and for investigating groove
instability in surface growth models.
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